Discuz! Board

 找回密码
 立即注册
搜索
热搜: 活动 交友 discuz
查看: 94|回复: 0

【磁共振成像的基本原理和概念】--- 磁共振成像仪的基本硬件

[复制链接]

1万

主题

1万

帖子

5万

积分

管理员

Rank: 9Rank: 9Rank: 9

积分
58026
发表于 2020-10-21 14:11:09 | 显示全部楼层 |阅读模式

                    

                    

                    
                    
                    <p style="margin-bottom:10px;margin-top:10px;text-align:center"><span style=""><span style="color: rgb(62, 62, 62); font-size: 15pt; font-family: 宋体; background-color: rgb(255, 255, 255);">点击上方“</span><span style="color: rgb(79, 129, 189); font-weight: bold; font-size: 15pt; font-family: 宋体; background-color: rgb(255, 255, 255);"></span><span style="color: rgb(62, 62, 62); font-size: 15pt; font-family: 宋体; background-color: rgb(255, 255, 255);">”即可关注我们,每日分享维修知识、医疗器械资讯信息!</span></span></p><p style="margin-bottom: 10px; margin-top: 10px;"><span style="">                        第一节  磁共振成像仪的基本硬件</span></p><p style="text-indent:28px;line-height:25px"><span style="">医用<span style="font-family:Times New Roman">MRI</span><span style="font-family:宋体">仪通常由主磁体、梯度线圈、脉冲线圈、计算机系统及其他辅助设备等五部分构成。</span></span></p><p style="text-indent:28px;line-height:25px"><span style="">一、主磁体</span></p><p style="text-indent:28px;line-height:25px"><span style="">主磁体是<span style="font-family:Times New Roman">MRI</span><span style="font-family:宋体">仪最基本的构件,是产生磁场的装置。根据磁场产生的方式可将主磁体分为</span></span><span style="">永磁型和电磁型</span><span style="">。永磁型主磁体实际上就是大块磁铁,磁场持续存在,目前绝大多数低场强开放式<span style="font-family:Times New Roman">MRI</span><span style="font-family:宋体">仪采用永磁型主磁体。电磁型主磁体是利用导线绕成的线圈,通电后即产生磁场,根据导线材料不同又可将</span></span><span style="">电磁型主磁体分为常导磁体和超导磁体</span><span style="">。常导磁体的线圈导线采用普通导电性材料,需要持续通电,目前已经逐渐淘汰;超导磁体的线圈导线采用超导材料制成,置于液氦的超低温环境中,导线内的电阻抗几乎消失,一旦通电后在无需继续供电情况下导线内的电流一直存在,并产生稳定的磁场,目前中高场强的<span style="font-family:Times New Roman">MRI</span><span style="font-family:宋体">仪均采用超导磁体。主磁体最重要的技术指标包括</span></span><span style="">场强、磁场均匀度及主磁体的长度</span><span style="">。</span></p><p style="text-indent:28px;line-height:25px"><span style="">主磁场的场强可采用高斯(<span style="font-family:Times New Roman">Gauss</span><span style="font-family:宋体">,</span><span style="font-family:Times New Roman">G</span><span style="font-family:宋体">)或特斯拉(</span><span style="font-family:Times New Roman">Tesla</span><span style="font-family:宋体">,</span><span style="font-family:Times New Roman">T</span><span style="font-family:宋体">)来表示,特斯拉是目前磁场强度的法定单位。</span></span><span style="">距离<span style="font-family:Times New Roman">5</span><span style="font-family:宋体">安培电流通过的直导线</span><span style="font-family:Times New Roman">25px</span><span style="font-family:宋体">处检测到的磁场强度被定义为</span><span style="font-family:Times New Roman">1</span><span style="font-family:宋体">高斯。特斯拉与高斯的换算关系为:</span><span style="font-family:Times New Roman">1 T = 10000 G</span><span style="font-family:宋体">。</span></span><span style="">在过去的<span style="font-family:Times New Roman">20</span><span style="font-family:宋体">年中,临床应用型</span><span style="font-family:Times New Roman">MRI</span><span style="font-family:宋体">仪主磁体的场强已由</span><span style="font-family:Times New Roman">0.2 T</span><span style="font-family:宋体">以下提高到</span><span style="font-family:Times New Roman">1.5 T</span><span style="font-family:宋体">以上,</span><span style="font-family:Times New Roman">1999</span><span style="font-family:宋体">年以来,</span><span style="font-family:Times New Roman">3.0 T</span><span style="font-family:宋体">的超高场强</span><span style="font-family:Times New Roman">MRI</span><span style="font-family:宋体">仪通过</span><span style="font-family:Times New Roman">FDA</span><span style="font-family:宋体">认证进入临床应用阶段。目前</span></span><span style="">一般把<span style="font-family:Times New Roman">0.5 T</span><span style="font-family:宋体">以下的</span><span style="font-family:Times New Roman">MRI</span><span style="font-family:宋体">仪称为</span></span><span style="">低场机</span><span style="">,<span style="font-family:Times New Roman">0.5 T</span><span style="font-family:宋体">到</span><span style="font-family:Times New Roman">1.0 T</span><span style="font-family:宋体">之间的称为</span></span><span style="">中场机</span><span style="">,<span style="font-family:Times New Roman">1.0 T</span><span style="font-family:宋体">到</span><span style="font-family:Times New Roman">2.0</span><span style="font-family:宋体">之间的称为</span></span><span style="">高场机</span><span style="">(<span style="font-family:Times New Roman">1.5 T</span><span style="font-family:宋体">为代表),大于</span><span style="font-family:Times New Roman">2.0 T</span><span style="font-family:宋体">的称为超高场机(</span><span style="font-family:Times New Roman">3.0 T</span><span style="font-family:宋体">为代表)。</span></span></p><p style="text-indent:28px;line-height:25px"><span style="">高场强<span style="font-family:Times New Roman">MRI</span><span style="font-family:宋体">仪的主要优势表现为:(</span><span style="font-family:Times New Roman">1</span><span style="font-family:宋体">)主磁场场强高提高质子的磁化率,增加图像的信噪比;(</span><span style="font-family:Times New Roman">2</span><span style="font-family:宋体">)在保证信噪比的前提下,可缩短</span><span style="font-family:Times New Roman">MRI</span><span style="font-family:宋体">信号采集时间;(</span><span style="font-family:Times New Roman">3</span><span style="font-family:宋体">)增加化学位移使磁共振频谱(</span><span style="font-family:Times New Roman">magnetic resonance spectroscopy</span><span style="font-family:宋体">,</span><span style="font-family:Times New Roman">MRS</span><span style="font-family:宋体">)对代谢产物的分辨力得到提高;(</span><span style="font-family:Times New Roman">4</span><span style="font-family:宋体">)增加化学位移使脂肪饱和技术更加容易实现;(</span><span style="font-family:Times New Roman">5</span><span style="font-family:宋体">)磁敏感效应增强,从而增加血氧饱和度依赖(</span><span style="font-family:Times New Roman">BOLD</span><span style="font-family:宋体">)效应,使脑功能成像的信号变化更为明显。</span></span></p><p style="text-indent:28px;line-height:25px"><span style="">当然<span style="font-family:Times New Roman">MRI</span><span style="font-family:宋体">仪场强增高也带来以下问题:(</span><span style="font-family:Times New Roman">1</span><span style="font-family:宋体">)设备生产成本增加,价格提高。(</span><span style="font-family:Times New Roman">2</span><span style="font-family:宋体">)噪音增加,虽然采用静音技术降低噪音,但是进一步增加了成本。(</span><span style="font-family:Times New Roman">3</span><span style="font-family:宋体">)因为射频特殊吸收率(</span><span style="font-family:Times New Roman">specific absorption ratio</span><span style="font-family:宋体">,</span><span style="font-family:Times New Roman">SAR</span><span style="font-family:宋体">)与主磁场场强的平方成正比,高场强下射频脉冲的能量在人体内累积明显增大,</span><span style="font-family:Times New Roman">SAR</span><span style="font-family:宋体">值问题在</span><span style="font-family:Times New Roman">3.0 T</span><span style="font-family:宋体">的超高场强机上表现得尤为突出。(</span><span style="font-family:Times New Roman">4</span><span style="font-family:宋体">)各种伪影增加,运动伪影、化学位移伪影及磁化率伪影等在</span><span style="font-family:Times New Roman">3.0 T</span><span style="font-family:宋体">超高场机上更为明显。由于上述问题的存在,</span><span style="font-family:Times New Roman">3.0 T</span><span style="font-family:宋体">的</span><span style="font-family:Times New Roman">MRI</span><span style="font-family:宋体">仪在临床应用还有一定限制,尽管其在中枢神经系统具有优势,但是在体部应用还不太成熟,因此,</span></span><span style="">目前以<span style="font-family:Times New Roman">1.5 T</span><span style="font-family:宋体">的高场机最为成熟和实用。</span></span></p><p style="text-indent:28px;line-height:25px"><span style="">MRI<span style="font-family:宋体">对主磁场均匀度的要求很高,原因在于:(</span><span style="font-family:Times New Roman">1</span><span style="font-family:宋体">)高均匀度的场强有助于提高图像信噪比,(</span><span style="font-family:Times New Roman">2</span><span style="font-family:宋体">)场强均匀是保证</span><span style="font-family:Times New Roman">MR</span><span style="font-family:宋体">信号空间定位准确性的前提,(</span><span style="font-family:Times New Roman">3</span><span style="font-family:宋体">)场强均匀可减少伪影(特别是磁化率伪影),(</span><span style="font-family:Times New Roman">4</span><span style="font-family:宋体">)高度均匀度磁场有利于进行大视野扫描,尤其肩关节等偏中心部位的</span><span style="font-family:Times New Roman">MRI</span><span style="font-family:宋体">检查,(</span><span style="font-family:Times New Roman">5</span><span style="font-family:宋体">)只有高度均匀度磁场才能充分利用脂肪饱和技术进行脂肪抑制扫描,(</span><span style="font-family:Times New Roman">6</span><span style="font-family:宋体">)高度均匀度磁场才能有效区分</span><span style="font-family:Times New Roman">MRS</span><span style="font-family:宋体">的不同代谢产物。现代</span><span style="font-family:Times New Roman">MRI</span><span style="font-family:宋体">仪的主动及被动匀场技术进步很快,使磁场均匀度有了很大提高。</span></span></p><p style="text-indent:28px;line-height:25px"><span style="">为保证主磁场均匀度,以往<span style="font-family:Times New Roman">MRI</span><span style="font-family:宋体">仪多采用</span><span style="font-family:Times New Roman">2m</span><span style="font-family:宋体">以上的长磁体,近几年伴随磁体技术的进步,各厂家都推出磁体长度为</span><span style="font-family:Times New Roman">1.4m</span><span style="font-family:宋体">~</span><span style="font-family:Times New Roman">1.7m</span><span style="font-family:宋体">的高场强(</span><span style="font-family:Times New Roman">1.5T</span><span style="font-family:宋体">)短磁体,使病人更为舒适,尤其适用于幽闭恐惧症的患者。</span></span></p><p style="text-indent:28px;line-height:25px"><span style="">随介入<span style="font-family:Times New Roman">MR</span><span style="font-family:宋体">的发展,开放式</span><span style="font-family:Times New Roman">MRI</span><span style="font-family:宋体">仪也取得很大进步,其场强已从原来的</span><span style="font-family:Times New Roman">0.2T</span><span style="font-family:宋体">左右上升到</span><span style="font-family:Times New Roman">0.5T</span><span style="font-family:宋体">以上,目前开放式</span><span style="font-family:Times New Roman">MRI</span><span style="font-family:宋体">仪的最高场强已达</span><span style="font-family:Times New Roman">1.0T</span><span style="font-family:宋体">。图像质量明显提高,扫描速度更快,已经几乎可以做到实时成像,使</span><span style="font-family:Times New Roman">MR“</span><span style="font-family:宋体">透视</span><span style="font-family:Times New Roman">”</span><span style="font-family:宋体">成为现实。开放式</span><span style="font-family:Times New Roman">MR</span><span style="font-family:宋体">扫描仪与</span><span style="font-family:Times New Roman">DSA</span><span style="font-family:宋体">的一体化设备使介入放射学迈进一个崭新时代。</span></span></p><p style="text-indent:28px;line-height:25px"><span style="">二、梯度线圈</span></p><p style="text-indent:28px;line-height:25px"><span style="">梯度线圈是<span style="font-family:Times New Roman">MRI</span><span style="font-family:宋体">仪最重要的硬件之一,主要作用有:(</span><span style="font-family:Times New Roman">1</span><span style="font-family:宋体">)进行</span><span style="font-family:Times New Roman">MRI</span><span style="font-family:宋体">信号的空间定位编码;(</span><span style="font-family:Times New Roman">2</span><span style="font-family:宋体">)产生</span><span style="font-family:Times New Roman">MR</span><span style="font-family:宋体">回波(梯度回波);(</span><span style="font-family:Times New Roman">3</span><span style="font-family:宋体">)施加扩散加权梯度场;(</span><span style="font-family:Times New Roman">4</span><span style="font-family:宋体">)进行流动补偿;(</span><span style="font-family:Times New Roman">5</span><span style="font-family:宋体">)进行流动液体的流速相位编码。梯度线圈由</span><span style="font-family:Times New Roman">X</span><span style="font-family:宋体">、</span><span style="font-family:Times New Roman">Y</span><span style="font-family:宋体">、</span><span style="font-family:Times New Roman">Z</span><span style="font-family:宋体">轴三个线圈构成(在</span><span style="font-family:Times New Roman">MR</span><span style="font-family:宋体">成像技术中,</span></span><span style="">把主磁场方向定义为<span style="font-family:Times New Roman">Z</span><span style="font-family:宋体">轴方向,与</span><span style="font-family:Times New Roman">Z</span><span style="font-family:宋体">轴方向垂直的平面为</span><span style="font-family:Times New Roman">XY</span><span style="font-family:宋体">平面</span></span><span style="">)。梯度线圈是特殊绕制的线圈,以<span style="font-family:Times New Roman">Z</span><span style="font-family:宋体">轴线圈为例,通电后线圈头侧部分产生的磁场与主磁场方向一致,因此磁场相互叠加,而线圈足侧部分产生的磁场与主磁场方向相反,因此磁场相减,从而形成沿着主磁场长轴(或称人体长轴),头侧高足侧低的梯度场,梯度线圈的中心磁场强度保持不变。</span><span style="font-family:Times New Roman">X</span><span style="font-family:宋体">、</span><span style="font-family:Times New Roman">Y</span><span style="font-family:宋体">轴梯度场的产生机理与</span><span style="font-family:Times New Roman">Z</span><span style="font-family:宋体">轴方向相同,只是方向不同而已。梯度线圈的主要性能指标包括梯度场强和切换率(</span><span style="font-family:Times New Roman">slew rate</span><span style="font-family:宋体">)。</span></span></p><p style="text-indent:28px;line-height:25px"><span style="">梯度场强是指单位长度内磁场强度的差别,通常用每米长度内磁场强度差别的毫特斯拉量(<span style="font-family:Times New Roman">mT/M</span><span style="font-family:宋体">)来表示。图</span><span style="font-family:Times New Roman">1</span><span style="font-family:宋体">为梯度场强示意图,条状虚线表示均匀的主磁场,斜线表示线性梯度场;两条线相交处为梯度场中点,该点梯度场强为零,不引起主磁场强度发生变化;虚线下方的斜线部分表示反向梯度场,造成主磁场强度呈线性降低;虚线上方的斜线部分为正向梯度场,造成主磁场强度呈线性增高。有效梯度场两端的磁场强度差值除以梯度场施加方向上有效梯度场的范围(长度)即表示梯度场强,即:</span></span></p><p style="text-indent:28px;margin-bottom:10px;text-align:center;line-height:25px"><span style="">梯度场强(<span style="font-family:Times New Roman">mT/M</span><span style="font-family:宋体">)=梯度场两端的磁场强度差值</span><span style="font-family:Times New Roman">/</span><span style="font-family:宋体">梯度场的长度</span></span></p><p style="text-indent:28px;line-height:25px"><span style="  z-index:1;left:0px;margin-left:14.0000px;margin-top:15.9333px;width:264.0000px;height:153.0000px "><img width="264" height="153" src="/mpres/htmledition/ueditor/themes/default/images/spacer.gif" word_img="file:///C:\Users\toshiba\AppData\Local\Temp\ksohtml\wps_clip_image-18037.png" style="background:url(/mpres/htmledition/ueditor/lang/zh_CN/images/localimage.png) no-repeat center center;border:1px solid #ddd"  /></span><span style=""> </span></p><p style="text-indent:28px;line-height:25px"><span style="  z-index:1;left:0px;margin-left:294.0000px;margin-top:8.0000px;width:249.0000px;height:132.0000px "><img width="249" height="132" src="/mpres/htmledition/ueditor/themes/default/images/spacer.gif" word_img="file:///C:\Users\toshiba\AppData\Local\Temp\ksohtml\wps_clip_image-27268.png" style="background:url(/mpres/htmledition/ueditor/lang/zh_CN/images/localimage.png) no-repeat center center;border:1px solid #ddd"  /></span><span style=""> </span></p><p style="text-indent:28px;line-height:25px"><br  /></p><p style="text-indent:28px;line-height:25px"><br  /></p><p style="text-indent:28px;line-height:25px"><span style=""> </span></p><p style="text-indent:28px;line-height:25px"><br  /></p><p style="text-indent:42px;line-height:25px"><span style=""> </span></p><p style="text-indent:90px;margin-top:10px;line-height:25px"><span style="">图<span style="font-family:Times New Roman">1  </span><span style="font-family:宋体">梯度场强示意图                           图</span><span style="font-family:Times New Roman">2  </span><span style="font-family:宋体">梯度场切换率示意图</span></span></p><p style="text-indent:28px;line-height:25px"><span style="">切换率(<span style="font-family:Times New Roman">slew rate</span><span style="font-family:宋体">)是指单位时间及单位长度内的梯度磁场强度变化量,常用每秒每米长度内磁场强度变化的毫特斯拉量(</span><span style="font-family:Times New Roman">mT/M.S</span><span style="font-family:宋体">)来表示,切换率越高表明梯度磁场变化越快,也即梯度线圈通电后梯度磁场达到预设值所需要时间(爬升时间)越短。图</span><span style="font-family:Times New Roman">2</span><span style="font-family:宋体">为梯度场切换率示意图。梯度场的变化可用梯形来表示,梯形中只有中间的矩形部分才是有效的,矩形部分表示梯度场已经达到预定值并持续存在,梯形的左腰表示梯度线圈通电后梯度场强逐渐增高、直至预定值,用</span></span><span style="">t</span><span style="">表示梯度场增高到预定值所需的时间,则梯度场的</span></p><p style="margin-bottom:6px;margin-top:6px;text-align:center;line-height:25px"><span style="">切换率=梯度场预定强度<span style="font-family:Times New Roman">/</span></span><span style="">t</span></p><p style="text-indent:28px;line-height:25px"><span style="">实际上就是梯形左腰的斜率。斜率越大,即切换率越高,梯度场爬升越快,所需的爬升时间越短。</span></p><p style="text-indent:28px;line-height:25px"><span style="">梯度线圈性能的提高对于<span style="font-family:Times New Roman">MR</span><span style="font-family:宋体">超快速成像至关重要,可以说没有梯度线圈的进步就不可能有超快速序列。</span><span style="font-family:Times New Roman">SS-RARE</span><span style="font-family:宋体">、</span><span style="font-family:Times New Roman">Turbo-GRE</span><span style="font-family:宋体">及</span><span style="font-family:Times New Roman">EPI</span><span style="font-family:宋体">等超快速序列以及水分子扩散加权成像对梯度场的场强及切换率都有很高的要求,高梯度场及高切换率不仅可以缩短回波间隙加快信号采集速度,还有利于提高图像的</span><span style="font-family:Times New Roman">SNR</span><span style="font-family:宋体">,因而近几年快速或超快速成像技术的发展可以说是直接得益于梯度线圈性能的改进。现代新型</span><span style="font-family:Times New Roman">1.5T MRI</span><span style="font-family:宋体">仪的常规梯度线圈场强已达</span><span style="font-family:Times New Roman">25mT/m</span><span style="font-family:宋体">以上,切换率达</span><span style="font-family:Times New Roman">120mT/m.s</span><span style="font-family:宋体">以上。</span><span style="font-family:Times New Roman">1.5T MRI</span><span style="font-family:宋体">仪最高配置的梯度线圈场强已达</span><span style="font-family:Times New Roman">60mT/m</span><span style="font-family:宋体">,切换率超过</span><span style="font-family:Times New Roman">200 mT/m.s</span><span style="font-family:宋体">。</span></span></p><p style="text-indent:28px;line-height:25px"><span style="">需要指出的是由于梯度磁场的剧烈变化会对人体造成一定的影响,特别是引起周围神经刺激,因此梯度磁场场强和切换率不是越高越好,是有一定限制的。</span></p><p style="text-indent:28px;line-height:25px"><span style="">三、脉冲线圈</span></p><p style="text-indent:28px;line-height:25px"><span style="">脉冲线圈也是<span style="font-family:Times New Roman">MRI</span><span style="font-family:宋体">仪的关键部件,脉冲线圈有发射线圈和接收线圈之分。发射线圈发射射频脉冲(无线电波)激发人体内的质子发生共振,就如同电台的发射天线;接收线圈接收人体内发出的</span><span style="font-family:Times New Roman">MR</span><span style="font-family:宋体">信号(也是一种无线电波),就如同收音机的天线。有的线圈可同时作为发射线圈和接受线圈,如装在扫描架内的体线圈和头颅正交线圈。大部分表面线圈只能作为接受线圈,而由体线圈来承担发射线圈的功能。</span></span></p><p style="text-indent:28px;line-height:25px"><span style="">MR<span style="font-family:宋体">成像对脉冲线圈也有很高的要求,发射线圈应尽可能均匀地发射射频脉冲,激发感兴趣容积内的质子。发射线圈所发射的射频脉冲的能量与其强度和持续时间有关,现代新型的发射线圈由高功率射频放大器供能,所发射的射频脉冲强度增大,因而所需要的持续时间缩短,加快了</span><span style="font-family:Times New Roman">MRI</span><span style="font-family:宋体">的采集速度。</span></span></p><p style="text-indent:28px;line-height:25px"><span style="">与<span style="font-family:Times New Roman">MR</span><span style="font-family:宋体">图像信噪比密切相关的是接收线圈,接收线圈离检查部位越近,所接收到的信号越强,线圈内体积越小,所接收到的噪声越低,因而各产家开发了多种适用于各检查部位的专用表面线圈,如心脏线圈、肩关节线圈、直肠内线圈、脊柱线圈等。</span></span></p><p style="text-indent:28px;line-height:25px"><span style="">近年来出现的表面相控阵线圈(<span style="font-family:Times New Roman">phased array coils</span><span style="font-family:宋体">)是脉冲线圈技术的一大飞跃。一个相控阵线圈由多个子线圈单元(</span><span style="font-family:Times New Roman">element</span><span style="font-family:宋体">)构成,同时需要有多个数据采集通道(</span><span style="font-family:Times New Roman">channel</span><span style="font-family:宋体">)与之匹配。目前临床上推出最新型的相控阵线圈的子单元和与之匹配的数据采集通道为</span><span style="font-family:Times New Roman">8</span><span style="font-family:宋体">个以上。利用相控阵线圈可明显提高</span><span style="font-family:Times New Roman">MR</span><span style="font-family:宋体">图像的信噪比,有助于改善薄层扫描、高分辨扫描及低场机的图像质量。利用相控阵线圈与平行采集技术相配合,可以进一步提高</span><span style="font-family:Times New Roman">MRI</span><span style="font-family:宋体">的信号采集速度。</span></span></p><p style="text-indent:28px;line-height:25px"><span style="">四、计算机系统</span></p><p style="text-indent:28px;line-height:25px"><span style="">计算机系统属于<span style="font-family:Times New Roman">MRI</span><span style="font-family:宋体">仪的大脑,控制着</span><span style="font-family:Times New Roman">MRI</span><span style="font-family:宋体">仪的脉冲激发、信号采集、数据运算和图像显示等功能。</span></span></p><p style="text-indent:28px;line-height:25px"><span style="">五、其他辅助设备</span></p><p><span style="">除了上述重要硬件设备外,<span style="font-family:Times New Roman">MRI</span><span style="font-family:宋体">仪还需要一些辅助设施方能完成病人的</span><span style="font-family:Times New Roman">MRI</span><span style="font-family:宋体">检查,例如:检查床、液氦及水冷却系统、空调、胶片处理系统等。</span></span></p><p><br  /></p>
               
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

Archiver|手机版|小黑屋|Comsenz Inc. ( 浙ICP备17000336号-1 )

GMT+8, 2025-3-10 22:03 , Processed in 0.075344 second(s), 33 queries .

Powered by Discuz! X3.4

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表