Discuz! Board

 找回密码
 立即注册
搜索
热搜: 活动 交友 discuz
查看: 7|回复: 0

【从业必读】X射线技术的发展历程(第三篇)

[复制链接]

1万

主题

1万

帖子

5万

积分

管理员

Rank: 9Rank: 9Rank: 9

积分
58026
发表于 2020-10-14 18:05:00 | 显示全部楼层 |阅读模式

                    

                    

                    
                    
                    <blockquote><p><span>让天下没有难找的医疗器械服务信息!</span></p><p><strong><span>“医疗器械助手”</span></strong><span>&nbsp;让一切触手可及!</span></p><p><p><img src="image/20201014/ac7c4c86bff3f0660e634292dc511095_1.jpg" /></p></p><p><span>点击图片</span><span><span></span><p><img src="image/20201014/c407fe90207c2622cc8e1dff32d28341_2.jpg" /></p><p><img src="image/20201014/c407fe90207c2622cc8e1dff32d28341_2.jpg" /></p><p><img src="image/20201014/c407fe90207c2622cc8e1dff32d28341_2.jpg" /></p></span></p></blockquote><p>&nbsp;</p><p><span><strong>热阴极管&nbsp;</strong></span><br  /></p><p>X光管分为充气管和真空管两类。1895年伦琴发现X射线时使用的是克鲁克斯发明的阴极射线管—即最早的充气X射线管,但因其功率小、寿命短、控制困难,应用不便。当时为了得到清晰的X光照片,甚至需要曝光一个小时以上。</p><p><p><img src="image/20201014/059a70040406609ed863243cfe7e7223_5.jpg" /></p></p><p>1912-1913年,美国科学家威廉.考林杰(William David Coolidge, 1873-1975)发明了热阴极管——即真空X射线管。它可提供可靠的电子束,改善线质和穿透性,避免了含气管的不稳定性。其阴极为直热式螺旋钨丝,阳极为铜块端面镶嵌的金属靶,管内真空度不低于10-4帕。阴极发射出的电子经数万至数十万伏高压加速后撞击靶面产生X射线,大大缩短了需要曝光的时间,为促进X射线的研究起了很大作用,还为发现肺病出了很大贡献。</p><p>热阴极管以后又经过许多改进,至今仍在应用。</p><p><br  /></p><p><p><img src="image/20201014/85ded0d231a443d7a8ca0004fc637eae_6.jpg" /></p></p><p><strong><span>&nbsp;X射线光谱</span></strong></p><p>1914年,英国物理学家莫塞莱(Henry Moseley,1887-1915)用布拉格X射线光谱仪研究不同元素的X射线,取得了重大成果。莫塞莱发现,以不同元素作为产生X射线的靶时,所产生的特征X射线的波长不同。他把各种元素按所产生的特征X射线的波长排列后,发现其次序与元素周期表中的次序一致,他称这个次序为原子序数,认为元素性质是其原子序数的周期函数。原子序数把各种元素基本上按原子量递增的顺序排列成一个系列,可是却比按原子量递增排列得到更合理的顺序。关于原子序数的发现被称为莫塞莱定律。</p><p>瑞典物理学家卡尔.西格班(Karl Manne Georg Siegbahn,1886-1978)继承和发展了莫塞莱的研究,他改进了真空泵的设计,他设计的X射线管,可使曝光时间大大缩短,从而使他的测量精度大为提高。因此他能够对X射线谱系作出精确的分析。他测量波长的精确度比莫塞莱提高了1000倍。西格班的研究支持了玻尔等人把原子中电子按壳层排列的观点。他和他的同事还从各种元素的标识X辐射整理出系统的规律,对原子的电子壳层的能量和辐射条件建立了完整的知识,同时也为与之有关的现象作出量子理论解释建立了坚实的经验基础。西格班在他的《伦琴射线谱学》一书中对这方面的成果作了全面总结,成为一部经典的科学著作。西格班获得了1924年的诺贝尔物理学奖,成为继巴克拉之后,又一次因X射线学的贡献而获诺贝尔物理学奖的物理学家。西格班的X射线谱仪测量精度非常之高,以至30年后还在许多方面得到应用。</p><p>有意思的是:卡尔.西格班的儿子凯.西格班在57年后的1981年,由于在电子能谱学方面的开创性工作获得了诺贝尔物理学奖的一半。</p><p><p><img src="image/20201014/f7df4d256ea4d6b4c8c5cbbaabb646de_7.jpg" /></p></p><p><strong><span>X射线光电子谱</span></strong></p><p>凯.西格班(Kai Manne Borje Siegbahn,1918- )一直从事核能谱的研究。20世纪50年代,他和同事们用双聚焦磁式能谱仪研究放射性能谱。当时,往往会因为回旋加速器的原因不得不停下来等待放射性样品。能否用一种更容易掌握的代用品来激发放射性辐射呢?凯.西格班设想用X射线管使材料发出光电子,然后再尽可能精确地测量其结合能。这种办法曾有人作过尝试,但灵敏度不高。凯.西格班将他在核能谱方面的经验用于外光电效应,并将高分辨率仪器用于实验,在这个领域获得了重大改进。他们将新研制的测量X射线光电子能量的双聚焦高分辨率电子能谱仪用于研究电子、光子或其它粒子轰击原子体系后发射出来的电子,系统地研究了各种元素的电子结合能。后来他们又将此项技术用于化学分析的电子能谱。凯.西格班开创了一种新的分析方法—X射线光电子能谱学XPS(X-ray Photoelectron Spectroscopy),或化学分析电子能谱学ESCA(Electron Spectroscopy for Chemical Analysis)。X射线光电子能谱学是化学上研究电子结构和高分子结构、链结构分析的有力工具,西格班开创的光电子能谱学为探测物质结构提供了非常精确的方法。</p><p>由于凯.西格班在电子能谱学方面的开创性工作,他获得了1981年诺贝尔物理学奖的一半。</p><p><br  /></p><p><p><img src="image/20201014/a60751939e3a57bb0c0ca034c428c253_8.png" /></p></p><p><strong><span>&nbsp;多晶体衍射</span></strong></p><p>1916年,美籍荷兰物理学家、化学家德拜(Peter Joseph Wilhelm Debye,1884-1966)和瑞士物理学家谢乐(Paul Scherrer,1890-1969)发展了用X射线研究晶体结构的方法,采用粉末状的晶体代替较难制备的大块晶体。粉末状晶体样品经X射线照射后在照相底片上可得到同心圆环的衍射图样(德拜-谢乐环),可用于鉴定样品的成分,测定晶体结构。因当时正值第一次世界大战,信息交流受阻,1917年,美国科学家Hull也独立提出了这一方法。德拜因利用偶极矩、X射线和电子衍射法测定分子结构的成就而获1936年诺贝尔化学奖。</p><p><br  /></p><p><p><img src="image/20201014/817a0212100727f9811e62d92b755422_9.jpg" /></p></p><p><br  /></p><p><span><strong>散射</strong></span></p><p>美国物理学家康普顿(Arthur Holy Compton,1892~1962)在大学生时期就跟随其兄卡尔·康普顿开始X射线的研究。后来他到了卡文迪什实验室,主要从事g射线的实验研究。他用精湛的实验技术精确测定了γ射线的波长,并确定γ射线在散射后波长会变得更长。但他没能从理论上解释这个实验事实。他到了美国华盛顿大学后,用X射线进行实验,检验用γ射线做的散射实验结果。他发现,晶体反射的单色X射线也能激发同样的现象,还发现这种X辐射具有偏振性。经过多次精细实验,康普顿得到了明确的结论,散射的波长比入射的波长更长,波长的改变量只决定于散射角。1923年5月,康普顿用爱因斯坦的光子概念成功地解释了x 射线通过石墨时所发生的散射。他假设光子与电子在碰撞过程中既要遵守能量守恒又要遵守动量守恒,他按照这个思路列出方程后求出了散射前后的波长差,结果跟实验数据完全符合,这样就证实了他的假设。这种现象被称为康普顿效应。</p><p>康普顿进一步证实了爱因斯坦的光子理论,揭示出光的二象性本质,从而导致了近代量子物理学的诞生和发展;另一方面康普顿效应也阐明了电磁辐射与物质相互作用的基本规律,从理论和实验上都具有极其深远的意义。康普顿于1927年与英国的物理学家威尔逊同获诺贝尔物理学奖。</p><p><br  /></p><section data-id="1658"><section><section><section data-id="1658"><section><section><section data-id="1658"><section><section><section data-id="1658"><section><section><p><span><strong>相关阅读</strong></span></p></section><p><p><img src="image/20201014/ec237188ae1e9c03eb4d9814f31b18ab_10.gif" /></p></p><h2><span>X射线技术的发展历程(第二篇)</span></h2><p><br  /></p><p><span>X射线技术的发展历程(第一篇)</span></p><p><span><br  /></span></p><p><span>X射线有多“毒”?</span></p><p><br  /></p><p><span>『微课堂』X射线球管究竟如何工作?</span></p><p><br  /></p><p><span>CT的发展及选购策略</span></p><p><br  /></p><p>『大开眼界』全球最“袖珍”的MRI系统问世,新生儿专用</p><p><br  /></p><h2><span>『大开眼界』上古医疗也有“黑科技”</span></h2><p><br  /></p><p><span>盲目追求3.0T磁共振?然而并没有什么卵用</span></p><p><br  /></p><p><span>视频解说MRI与CT的区别</span></p></section></section></section></section></section></section></section></section></section></section></section><p><br  /></p><p><br  /></p><p><p><img src="image/20201014/da0d101cb2763cefb61f8120386ec54a_11.png" /></p></p>
               
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

Archiver|手机版|小黑屋|Comsenz Inc. ( 浙ICP备17000336号-1 )

GMT+8, 2025-3-18 13:34 , Processed in 0.086702 second(s), 33 queries .

Powered by Discuz! X3.4

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表